
Carnegie Mellon

1

Xi’an Jiaotong University

Operating Systems:
History and Three Easy Pieces

COMP400727: Introduction to Computer Systems

Hao Li
Xi’an Jiaotong University

Carnegie Mellon

2

Xi’an Jiaotong University

Today

 History of Operating Systems

 Three Easy Pieces

Carnegie Mellon

3

Xi’an Jiaotong University

Earliest days: One batch job at a time

IBM 704 at Langley Research Center (NASA), 1957
https://commons.wikimedia.org/w/index.php?curid=6455009

Carnegie Mellon

4

Xi’an Jiaotong University

1960s: Operating System for Multitasking

Carnegie Mellon

5

Xi’an Jiaotong University

1960s: MULTICS Fails

Carnegie Mellon

6

Xi’an Jiaotong University

1969: BELL Labs in AT&T

Ken Thompson
(1943-)

Space Travel Game

Carnegie Mellon

7

Xi’an Jiaotong University

1969: BELL Labs in AT&T

Digital Equipment Corporation PDP-7

Carnegie Mellon

8

Xi’an Jiaotong University

1969: How to Play Space Travel in PDP-7?

Operating System

Applications

Hardware
with Assembly

in ONE month!

Carnegie Mellon

9

Xi’an Jiaotong University

1969: BELL Labs in AT&T

Dennis Ritchie
(1941-2011)

Carnegie Mellon

10

Xi’an Jiaotong University

1969: BELL Labs in AT&T

“Your OS is much worse than MULTICS”

“Call it UNICS”

Carnegie Mellon

11

Xi’an Jiaotong University

1971: Re-Architect UNICS

UNICS → UNIX

 B Language: extended from BCPL

 A high-level programming language

 C Language: extended from B

 Decouple PL from hardware

 You are still using it!

Carnegie Mellon

12

Xi’an Jiaotong University

1973: Xerox PARC

Carnegie Mellon

13

Xi’an Jiaotong University

1973: Xerox PARC

Carnegie Mellon

14

Xi’an Jiaotong University

1979: Xerox PARC Alto

Steve Jobs
(1955-2011)

Carnegie Mellon

15

Xi’an Jiaotong University

1983: Apple Lisa

Carnegie Mellon

16

Xi’an Jiaotong University

1980: A Quick and Dirty Operating System

Tim Paterson
(1956-)

 Develop an OS with 4 months

 For 16bit Intel 8086 CPU

 QDOS
▪ Quick and Dirty Operating System

Carnegie Mellon

17

Xi’an Jiaotong University

1980: A Quick and Dirty Operating System

Paul Allen
(1953-2018)

Tim Paterson
(1956-)

Carnegie Mellon

18

Xi’an Jiaotong University

1981: Microsoft

Paul Allen
(1953-2018)

Bill Gates
(1955-)

Carnegie Mellon

19

Xi’an Jiaotong University

1981: MS-DOS

$50,000

QDOS

MS-DOS

Carnegie Mellon

20

Xi’an Jiaotong University

1990: Should OS and Hardware Decouple?

MS-DOS:
IBM, Intel, Apple, …

Apple:
One OS for One Machine

Carnegie Mellon

21

Xi’an Jiaotong University

1990: Windows

Windows 3.0

Carnegie Mellon

22

Xi’an Jiaotong University

1990: Two Thieves

Well, Steve, I think there’s more than one
way of looking at it. I think it’s more like
we both had this rich neighbor named
Xerox and I broke into his house to steal
the TV set and found out that you had
already stolen it.

You Are Stealing
Our Operating System!

Carnegie Mellon

23

Xi’an Jiaotong University

1991: A New and Open OS

Andrew Tanenbaum
(1944-)

Carnegie Mellon

24

Xi’an Jiaotong University

1991: A New and Open OS

Linus Torvalds
(1969-)

Carnegie Mellon

25

Xi’an Jiaotong University

1991: The First Email

Carnegie Mellon

26

Xi’an Jiaotong University

1991: Free Software

Richard Stallman
(1953-)

 GPL

▪ Copy-Left

 GNU

▪ GNU is Not Unix

▪ Emacs, gcc, gdb, …

Carnegie Mellon

27

Xi’an Jiaotong University

1991: Linux and Open Source Project

 Applications

 Operating Systems

Carnegie Mellon

28

Xi’an Jiaotong University

Nowadays

Carnegie Mellon

29

Xi’an Jiaotong University

Today

 History of Operating Systems

 Three Easy Pieces

Carnegie Mellon

30

Xi’an Jiaotong University

What a happens when a program runs?

 A running program executes instructions.
1. The processor fetches an instruction from memory.

2. Decode: Figure out which instruction this is

3. Execute: i.e., add two numbers, access memory, check a condition,
jump to function, and so forth.

4. The processor moves on to the next instruction and so on.

Carnegie Mellon

31

Xi’an Jiaotong University

Operating System (OS)

 Responsible for
▪ Making it easy to run programs

▪ Allowing programs to share memory

▪ Enabling programs to interact with devices

OS is in charge of making sure the system operates
correctly and efficiently.

Carnegie Mellon

32

Xi’an Jiaotong University

1st Piece: Virtualization

 The OS takes a physical resource and transforms it into a
virtual form of itself.

▪ Physical resource: Processor, Memory, Disk …

▪ The virtual form is more general, powerful and easy-to-use.

▪ Sometimes, we refer to the OS as a virtual machine.

Carnegie Mellon

33

Xi’an Jiaotong University

System call

 System call allows user to tell the OS what to do.
▪ The OS provides some interface (APIs, standard library).

▪ A typical OS exports a few hundred system calls.

▪ Run programs

▪ Access memory

▪ Access devices

Carnegie Mellon

34

Xi’an Jiaotong University

The OS is a resource manager.

 The OS manage resources such as CPU, memory and disk.

 The OS allows
▪ Many programs to run → Sharing the CPU

▪ Many programs to concurrently access their own instructions and
data → Sharing memory

▪ Many programs to access devices → Sharing disks

Carnegie Mellon

35

Xi’an Jiaotong University

Virtualizing the CPU

 The system has a very large number of virtual CPUs.
▪ Turning a single CPU into a seemingly infinite number of CPUs.

▪ Allowing many programs to seemingly run at once
→ Virtualizing the CPU

Carnegie Mellon

36

Xi’an Jiaotong University

Virtualizing the CPU (Cont.)

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <assert.h>

5 #include "common.h"

6

7 int

8 main(int argc, char *argv[])

9 {

10 if (argc != 2) {

11 fprintf(stderr, "usage: cpu <string>\n");

12 exit(1);

13 }

14 char *str = argv[1];

15 while (1) {

16 Spin(1); // Repeatedly checks the time and

returns once it has run for a second

17 printf("%s\n", str);

18 }

19 return 0;

20 }

Simple Example(cpu.c): Code That Loops and Prints

Carnegie Mellon

37

Xi’an Jiaotong University

Virtualizing the CPU (Cont.)

 Execution result 1.

prompt> gcc -o cpu cpu.c -Wall

prompt> ./cpu "A"

A

A

A

ˆC

prompt>

Run forever; Only by pressing “Control-c” can we halt the program

Carnegie Mellon

38

Xi’an Jiaotong University

Virtualizing the CPU (Cont.)

 Execution result 2.

prompt> ./cpu A & ./cpu B & ./cpu C & ./cpu D &

[1] 7353

[2] 7354

[3] 7355

[4] 7356

A

B

D

C

A

B

D

C

A

C

B

D

...

Even though we have only one processor, all four of
programs seem to be running at the same time!

Carnegie Mellon

39

Xi’an Jiaotong University

Virtualizing Memory

 The physical memory is an array of bytes.

 A program keeps all of its data structures in memory.
▪ Read memory (load):

▪ Specify an address to be able to access the data

▪ Write memory (store):

▪ Specify the data to be written to the given address

Carnegie Mellon

40

Xi’an Jiaotong University

Virtualizing Memory (Cont.)

 A program that Accesses Memory (mem.c)

1 #include <unistd.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "common.h"

5

6 int

7 main(int argc, char *argv[])

8 {

9 int *p = malloc(sizeof(int)); // a1: allocate some

memory

10 assert(p != NULL);

11 printf("(%d) address of p: %08x\n",

12 getpid(), (unsigned) p); // a2: print out the

address of the memmory

13 *p = 0; // a3: put zero into the first slot of the memory

14 while (1) {

15 Spin(1);

16 *p = *p + 1;

17 printf("(%d) p: %d\n", getpid(), *p); // a4

18 }

19 return 0;

20 }

Carnegie Mellon

41

Xi’an Jiaotong University

Virtualizing Memory (Cont.)

 The output of the program mem.c

▪ The newly allocated memory is at address 00200000.

▪ It updates the value and prints out the result.

prompt> ./mem

(2134) memory address of p: 00200000

(2134) p: 1

(2134) p: 2

(2134) p: 3

(2134) p: 4

(2134) p: 5

ˆC

Carnegie Mellon

42

Xi’an Jiaotong University

Virtualizing Memory (Cont.)

 Running mem.c multiple times

▪ It is as if each running program has its own private memory.

▪ Each running program has allocated memory at the same
address.

▪ Each seems to be updating the value at 00200000

independently.

prompt> ./mem &; ./mem &

[1] 24113

[2] 24114

(24113) memory address of p: 00200000

(24114) memory address of p: 00200000

(24113) p: 1

(24114) p: 1

(24114) p: 2

(24113) p: 2

(24113) p: 3

(24114) p: 3

...

Carnegie Mellon

43

Xi’an Jiaotong University

Virtualizing Memory (Cont.)

 Each process accesses its own private virtual address
space.
▪ The OS maps address space onto the physical memory.

▪ A memory reference within one running program does not affect
the address space of other processes.

▪ Physical memory is a shared resource, managed by the OS.

Carnegie Mellon

44

Xi’an Jiaotong University

2nd Piece: Concurrency

 The OS is juggling many things at once, first running one
process, then another, and so forth.

 Modern multi-threaded programs also exhibit the
concurrency problem.

Carnegie Mellon

45

Xi’an Jiaotong University

Concurrency Example
 A Multi-threaded Program (thread.c)

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker(void *arg) {

9 int i;

10 for (i = 0; i < loops; i++) {

11 counter++;

12 }

13 return NULL;

14 }

15

16 int

17 main(int argc, char *argv[])

18 {

19 if (argc != 2) {

20 fprintf(stderr, "usage: threads <value>\n");

21 exit(1);

22 }

Carnegie Mellon

46

Xi’an Jiaotong University

Concurrency Example (Cont.)

▪ The main program creates two threads.

▪ Thread: a function running within the same memory space. Each thread
start running in a routine called worker().

▪ worker(): increments a counter

23 loops = atoi(argv[1]);

24 pthread_t p1, p2;

25 printf("Initial value : %d\n", counter);

26

27 Pthread_create(&p1, NULL, worker, NULL);

28 Pthread_create(&p2, NULL, worker, NULL);

29 Pthread_join(p1, NULL);

30 Pthread_join(p2, NULL);

31 printf("Final value : %d\n", counter);

32 return 0;

33 }

Carnegie Mellon

47

Xi’an Jiaotong University

Concurrency Example (Cont.)

 loops determines how many times each of the two
workers will increment the shared counter in a loop.
▪ loops: 1000.

▪ loops: 100000.

prompt> gcc -o thread thread.c -Wall -pthread

prompt> ./thread 1000

Initial value : 0

Final value : 2000

prompt> ./thread 100000

Initial value : 0

Final value : 143012 // huh??

prompt> ./thread 100000

Initial value : 0

Final value : 137298 // what the??

Carnegie Mellon

48

Xi’an Jiaotong University

Why is this happening?

 Increment a shared counter → take three instructions.
1. Load the value of the counter from memory into register.

2. Increment it

3. Store it back into memory

 These three instructions do not execute atomically. →
Problem of concurrency happen.

Carnegie Mellon

49

Xi’an Jiaotong University

3rd Piece: Persistence

 Devices such as DRAM store values in a volatile.

 Hardware and software are needed to store data
persistently.
▪ Hardware: I/O device such as a hard drive, solid-state drives(SSDs)

▪ Software:

▪ File system manages the disk.

▪ File system is responsible for storing any files the user creates.

Carnegie Mellon

50

Xi’an Jiaotong University

Persistence (Cont.)

 Create a file (/tmp/file) that contains the string “hello
world”

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

| O_TRUNC, S_IRWXU);

11 assert(fd > -1);

12 int rc = write(fd, "hello world\n", 13);

13 assert(rc == 13);

14 close(fd);

15 return 0;

16 }

open(), write(), and close() system calls are routed to the part of

OS called the file system, which handles the requests

Carnegie Mellon

51

Xi’an Jiaotong University

Persistence (Cont.)

 What OS does in order to write to disk?
▪ Figure out where on disk this new data will reside

▪ Issue I/O requests to the underlying storage device

 File system handles system crashes during write.
▪ Journaling or copy-on-write

▪ Carefully ordering writes to disk

Carnegie Mellon

52

Xi’an Jiaotong University

Design Goals

 Build up abstraction
▪ Make the system convenient and easy to use.

 Provide high performance
▪ Minimize the overhead of the OS.

▪ OS must strive to provide virtualization without excessive overhead.

 Protection between applications
▪ Isolation: Bad behavior of one does not harm other and the OS

itself.

Carnegie Mellon

53

Xi’an Jiaotong University

Design Goals (Cont.)

 High degree of reliability
▪ The OS must also run non-stop.

 Other issues
▪ Energy-efficiency

▪ Security

▪ Mobility

	幻灯片 1
	幻灯片 2: Today
	幻灯片 3: Earliest days: One batch job at a time
	幻灯片 4: 1960s: Operating System for Multitasking
	幻灯片 5: 1960s: MULTICS Fails
	幻灯片 6: 1969: BELL Labs in AT&T
	幻灯片 7: 1969: BELL Labs in AT&T
	幻灯片 8: 1969: How to Play Space Travel in PDP-7?
	幻灯片 9: 1969: BELL Labs in AT&T
	幻灯片 10: 1969: BELL Labs in AT&T
	幻灯片 11: 1971: Re-Architect UNICS
	幻灯片 12: 1973: Xerox PARC
	幻灯片 13: 1973: Xerox PARC
	幻灯片 14: 1979: Xerox PARC Alto
	幻灯片 15: 1983: Apple Lisa
	幻灯片 16: 1980: A Quick and Dirty Operating System
	幻灯片 17: 1980: A Quick and Dirty Operating System
	幻灯片 18: 1981: Microsoft
	幻灯片 19: 1981: MS-DOS
	幻灯片 20: 1990: Should OS and Hardware Decouple?
	幻灯片 21: 1990: Windows
	幻灯片 22: 1990: Two Thieves
	幻灯片 23: 1991: A New and Open OS
	幻灯片 24: 1991: A New and Open OS
	幻灯片 25: 1991: The First Email
	幻灯片 26: 1991: Free Software
	幻灯片 27: 1991: Linux and Open Source Project
	幻灯片 28: Nowadays
	幻灯片 29: Today
	幻灯片 30: What a happens when a program runs?
	幻灯片 31: Operating System (OS)
	幻灯片 32: 1st Piece: Virtualization
	幻灯片 33: System call
	幻灯片 34: The OS is a resource manager.
	幻灯片 35: Virtualizing the CPU
	幻灯片 36: Virtualizing the CPU (Cont.)
	幻灯片 37: Virtualizing the CPU (Cont.)
	幻灯片 38: Virtualizing the CPU (Cont.)
	幻灯片 39: Virtualizing Memory
	幻灯片 40: Virtualizing Memory (Cont.)
	幻灯片 41: Virtualizing Memory (Cont.)
	幻灯片 42: Virtualizing Memory (Cont.)
	幻灯片 43: Virtualizing Memory (Cont.)
	幻灯片 44: 2nd Piece: Concurrency
	幻灯片 45: Concurrency Example
	幻灯片 46: Concurrency Example (Cont.)
	幻灯片 47: Concurrency Example (Cont.)
	幻灯片 48: Why is this happening?
	幻灯片 49: 3rd Piece: Persistence
	幻灯片 50: Persistence (Cont.)
	幻灯片 51: Persistence (Cont.)
	幻灯片 52: Design Goals
	幻灯片 53: Design Goals (Cont.)

