Xi’an Jiaotong University

Operating Systems:
History and Three Easy Pieces

COMP400727: Introduction to Computer Systems

Hao Li
Xi’an Jiaotong University

Xi’an Jiaotong University

Today

m History of Operating Systems
m Three Easy Pieces

Xi’an Jiaotong University

Earliest days: One batch job at a time

IBM 704 at Langley Research Center (NASA), 1957
https://commons.wikimedia.org/w/index.php?curid=6455009

1960s: Operating System for Multitasking

—_—
| —~

at&t

or:

Xi’an Jiaotong University

1960s: MULTICS Fails

Xi’an Jiaotong University

1969: BELL Labs in AT&T

.

oL/

.‘/ /1 1 il

7 -“\ '\‘\.i T

Ken Thompson Space Travel Game
(1943-)

Xi’an Jiaotong University

1969: BELL Labs in AT&T

Digital Equipment Corporation PDP-7

1969: How to Play Space Travel in PDP-7?

Applications

with Assembly

Hardware
in ONE month!

1969: BELL Labs in AT&T

Dennis Ritchie ”

%
1941-2011 4
',’

{L

S ‘.
/ R
/NN ¥

Dennis Ritchie
(1941-2011)

1969: BELL Labs in AT&T

Dennis Ritchie
1941-2011

“Your OS is much worse than MULTICS”

“Call it UNICS”

1971: Re-Architect UNICS

m B Language: extended from BCPL
m A high-level programming language

m CLanguage: extended from B
m Decouple PL from hardware

Dennis Ritchie w ‘
1941-2011 A

m You are still using it!

UNICS - UNIX

1

1973: Xerox PARC

1973: Xerox PARC

™
ATAT UNIX pe

Loader Version 3.51

Copyright (C) 1985, 1986
ATRT
A1l Rights Reserved

LA AL L AL L R L R L L R L L L LR LR LD L L L L L L L

Searching Floppy disk...

Searching hard disk...

0000000000000 00000000000 0000000000000 000 0 0 0 0 e
SRR LR L A L L L L L R L L L L L L DR L L D LR L L L L L DL L L L AL
LA L L L L L

Xi’an Jiaotong University

1979: Xerox PARC Alto

""
R

Steve Jbbs
(1955-2011)

14

1983: Apple Lisa

15

Xi’an Jiaotong University

1980: A Quick and Dirty Operating System

m Develop an OS with 4 months
m For 16bit Intel 8086 CPU

m QDOS
® Quick and Dirty Operating System

Tim Paterson
(1956-)

16

Xi’an Jiaotong University

1980: A Quick and Dirty Operating System

Tim Paterson Paul Allen
(1956-) (1953-2018)

17

Xi’an Jiaotong University

1981: Microsoft

Bill Gates Paul Allen
(1955-) (1953-2018)

18

1981: MS-DOS

19

Xi’an Jiaotong University

1990: Should OS and Hardware Decouple?

MS-DOS: Apple:
IBM, Intel, Apple, ... One OS for One Machine

20

1990: Windows

Program Manager

Xi’an Jiaotong University

File Options Window Help

Main

=

Filz Manager Control Panel Frint Manager Clipboard
Viewst

&

wlindows FIFEdior ReadMe rhuuzniilng
Selup

M5-DOS
Frompt

About Program Manager

Accessories Games Statllp

In

Pragiam Manager

Microsoft Windows

Micosoer Version 3.1 Thai Edition

WINDOWS. Copyright © 1985-1993 Microsoft Corporation

This product is licensed to:
HanayoPlus

Unknown Drganization
Praduct Number:

Memory: 100,932 KB Free
System Resources: 85% Free

ows 3.0

21

Xi’an Jiaotong University

1990: Two Thieves

i -—-—— /"
ﬁE' —
| m—

LA

You Are Stealing
Our Operating System!

Well, Steve, | think there’s more than one
way of looking at it. | think it’s more like
we both had this rich neighbor named
Xerox and | broke into his house to steal
the TV set and found out that you had
already stolen it.

Xi’an Jiaotong University

1991: A New and Open OS

| |
OPERATING
SYS I ENVDS
DESIGN AND
INMPLEMENTATION
1987: Andy
Tanenbaum

Includes source
code for Minix
(“toy” Unix)

Andrew Tanenbaum
(1944-)

23

Xi’an Jiaotong University

1991: A New and Open OS

[
OPERATING
SYSTEMS

DESIGN AND
IMPLEMENTATION

PRENTICEHALL SOFTWARE SERIES

Linus Torvalds
(1969-)

24

1991: The First Email

From: torvaldsflklaava.Helsinki.FI (Linus Benedict Torwvalds)
Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?

Summary: small poll for my new operating system

Message-ID: <1991Aug25.205788.9541@klaava.Helsinki.FI>
Date: 25 Aug 91 28:57:08 GMT

Organization: University of Helsinki

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since april, and is starting to get ready. I'd like any feedback on
things people like/dislike in minix, as my 05 resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I've currently ported bash(1.88) and gcc(1.48), and things seem to work.
This implies that I'll get something practical within a few months, and
I'd like to know what features most people would want. Any suggestions
are welcome, but I won't promise I'll implement them :-)

Linus (torvalds@kruuna.helsinki.f1i)
PS. Yes - it's free of any minix code, and it has a multi-threaded fs.

It is NOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that's all I have :-{.

25

Xi’an Jiaotong University

1991: Free Software

m GPL
" Copy-Left

m GNU
" GNU is Not Unix
" Emacs, gcc, gdb, ...

Richard Stallman
(1953-)

26

Xi’an Jiaotong University

1991: Linux and Open Source Project

Xi’an Jiaotong University

Nowadays

K ik oc U
Windows 1 Windows 3.1 Windows 95 Windows XP
1985 1992 1995 2001

- T 9
A ' ‘ Mandriva Tune

archlnuxpyduntutubuntu xubuntu

Wlndows7 Windows 8 Windows 10 A *72* @ dj @ g

Y%
2012 2015 e i

archbangCentOSkubuntu UbuntUZDRlN

-: 1 | ‘/ \

WoL@ae®:

KNOPPleogeiq PCBSDSObOgOﬂScnenMnc

CHOHOO®HDH Y

. fedorartiuxu 3PllppyUltnnate\/EC\tC’f
debian Edition

Ol B

bodhiCHAKRAFreeBSDgento linuxPinguyOSistackvaze

28

Xi’an Jiaotong University

Today

m History of Operating Systems
m Three Easy Pieces

29

What a happens when a program runs?

m A running program executes instructions.
1. The processor fetches an instruction from memory.
2. Decode: Figure out which instruction this is

3. Execute: i.e., add two numbers, access memory, check a condition,
jump to function, and so forth.

4. The processor moves on to the next instruction and so on.

30

Operating System (OS)

m Responsible for
= Making it easy to run programs
= Allowing programs to share memory
= Enabling programs to interact with devices

OS is in charge of making sure the system operates
correctly and efficiently.

31

Xi’an Jiaotong University

15t Piece: Virtualization

m The OS takes a physical resource and transforms it into a
virtual form of itself.
= Physical resource: Processor, Memory, Disk ...
® The virtual form is more general, powerful and easy-to-use.

= Sometimes, we refer to the OS as a virtual machine.

32

Xi’an Jiaotong University

System call

m System call allows user to tell the OS what to do.
" The OS provides some interface (APIs, standard library).
= A typical OS exports a few hundred system calls.

= Run programs
= Access memory
= Access devices

33

Xi’an Jiaotong University

The OS is a resource manager.

m The OS manage resources such as CPU, memory and disk.

m The OS allows

= Many programs to run = Sharing the CPU

= Many programs to concurrently access their own instructions and
data = Sharing memory

" Many programs to access devices = Sharing disks

34

Xi’an Jiaotong University

Virtualizing the CPU

m The system has a very large number of virtual CPUs.
® Turning a single CPU into a seemingly infinite number of CPUs.

= Allowing many programs to seemingly run at once
- Virtualizing the CPU

35

Xi’an Jiaotong University

Virtualizing the CPU (Cont.)

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <assert.h>

5 #include "common.h"

6

7 int

8 main (int argc, char *argv[])

9 {

10 if (argc '= 2) {

11 fprintf (stderr, "usage: cpu <string>\n");

12 exit(1l);

13 }

14 char *str = argv[1l];

15 while (1) {

16 Spin(l); // Repeatedly checks the time and
returns once it has run for a second

17 printf ("$s\n", str);

18 }

19 return O;

20 }

Simple Example(cpu. c): Code That Loops and Prints

36

Virtualizing the CPU (Cont.)

m Execution result 1.

prompt> gcc -o cpu cpu.c -Wall
prompt> ./cpu "A"

A

A

A

“C

prompt>

Run forever; Only by pressing “Control-c” can we halt the program

37

Xi’an Jiaotong University

Virtualizing the CPU (Cont.)

m Execution result 2.

prompt> ./cpu A & ./cpuB & ./cpuC & ./cpuD &
[1] 7353
[2] 7354
[3] 7355
[4] 7356

owOoOrOQowPowp

Even though we have only one processor, all four of
programs seem to be running at the same time!

38

Xi’an Jiaotong University

Virtualizing Memory

m The physical memory is an array of bytes.

m A program keeps all of its data structures in memory.
= Read memory (load):
= Specify an address to be able to access the data
= Write memory (store):
= Specify the data to be written to the given address

39

Xi’an Jiaotong University

Virtualizing Memory (Cont.)

m A program that Accesses Memory (mem. c)

1 #include <unistd.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "common.h"

5

6 int

7 main (int argc, char *argv[])

8 {

9 int *p = malloc(sizeof(int)); // al: allocate some
memory

10 assert(p != NULL);

11 printf (" ($d) address of p: %08x\n",

12 getpid(), (unsigned) p); // a2: print out the
address of the memmory

13 *p = 0; // a3: put zero into the first slot of the memory

14 while (1) {

15 Spin(1) ;

16 *p = *p + 1;

17 printf (" (3d) p: %d\n", getpid(), *p); // a4

18 }

19 return O;

20 }

40

Xi’an Jiaotong University

Virtualizing Memory (Cont.)

m The output of the program mem. c

prompt> ./mem

(2134) memory address of p: 00200000
(2134) p: 1

(2134) p: 2

(2134) p: 3

(2134) p: 4

(2134) p: 5

“C

" The newly allocated memory is at address 00200000.

" |t updates the value and prints out the result.

4

Xi’an Jiaotong University

Virtualizing Memory (Cont.)

® Running mem. c multiple times

prompt> ./mem &; ./mem &

[1] 24113

[2] 24114

(24113) memory address of p: 00200000
(24114) memory address of p: 00200000

(24113)
(24114)

(24113) p: 1
(24114) p: 1
(24114) p: 2
(24113) p: 2
p: 3
p: 3

" |tis asif each running program has its own private memory.

= Each running program has allocated memory at the same
address.

= Each seems to be updating the valueat 00200000
independently.

42

Xi’an Jiaotong University

Virtualizing Memory (Cont.)

m Each process accesses its own private virtual address
space.
" The OS maps address space onto the physical memory.

= A memory reference within one running program does not affect
the address space of other processes.

= Physical memory is a shared resource, managed by the OS.

43

Xi’an Jiaotong University

2"d Pjece: Concurrency

m The OS is juggling many things at once, first running one
process, then another, and so forth.

m Modern multi-threaded programs also exhibit the
concurrency problem.

44

Xi’an Jiaotong University

Concurrency Example
m A Multi-threaded Program (thread. c)

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker (void *arg) ({

9 int i;

10 for (1 = 0; i < loops; i++) {
11 counter++;
12 }

13 return NULL;

14 }

15

16 int

17 main (int argc, char *argv[])
18 {

19 if (argec !'= 2) {

20 fprintf (stderr, "usage: threads <value>\n");
21 exit (1),
22 }

45

Xi’an Jiaotong University

Concurrency Example (Cont.)

23 loops = atoi(argv([1l]);

24 pthread t pl, p2;

25 printf ("Initial value : %d\n", counter);
26

27 Pthread create(&pl, NULL, worker, NULL);
28 Pthread create(&p2, NULL, worker, NULL);
29 Pthread join(pl, NULL);

30 Pthread join(p2, NULL);

31 printf ("Final value : %d\n", counter);
32 return O;

33 }

" The main program creates two threads.

= Thread: a function running within the same memory space. Each thread
start running in a routine called worker ().

= worker ():increments a counter

46

Xi’an Jiaotong University

Concurrency Example (Cont.)

m loops determines how many times each of the two
workers will increment the shared counter in a loop.
" loops:1000.

prompt> gcc -o thread thread.c -Wall -pthread
prompt> ./thread 1000

Initial value : O

Final value : 2000

" loops:100000.

prompt> ./thread 100000

Initial value : O

Final value : 143012 // huh??
prompt> ./thread 100000

Initial value : O

Final value : 137298 // what the??

47

Why is this happening?
m Increment a shared counter = take three instructions.
1. Load the value of the counter from memory into register.

2. Increment it
3. Store it back into memory

m These three instructions do not execute atomically. 2>
Problem of concurrency happen.

48

Xi’an Jiaotong University

3rd Pjece: Persistence

m Devices such as DRAM store values in a volatile.

m Hardware and software are needed to store data
persistently.
= Hardware: /O device such as a hard drive, solid-state drives(SSDs)
= Software:
= File system manages the disk.
= File system is responsible for storing any files the user creates.

49

Xi’an Jiaotong University

Persistence (Cont.)

m Create afile (/tmp/£file) that contains the string “hello

world”
1 #include <stdio.h>
2 #include <unistd.h>
3 #include <assert.h>
4 #include <fcntl.h>
5 #include <sys/types.h>
6
7 int
8 main (int argc, char *argv[])
9 {
10 int fd = open("/tmp/file", O WRONLY | O CREAT
| O TRUNC, S_IRWXU);
11 assert(fd > -1);
12 int rec = write(fd, "hello world\n", 13);
13 assert(rc == 13);
14 close (£fd) ;
15 return O;
16 }

open (), write (), and close () system calls are routed to the part of

OS called the file system, which handles the requests
50

Xi’an Jiaotong University

Persistence (Cont.)

m What OS does in order to write to disk?

= Figure out where on disk this new data will reside
= [ssue I/0 requests to the underlying storage device

m File system handles system crashes during write.
= Journaling or copy-on-write
= Carefully ordering writes to disk

51

Xi’an Jiaotong University

Design Goals

m Build up abstraction

= Make the system convenient and easy to use.

m Provide high performance
= Minimize the overhead of the OS.

= OS must strive to provide virtualization without excessive overhead.

m Protection between applications

= |solation: Bad behavior of one does not harm other and the OS
itself.

52

Xi’an Jiaotong University

Design Goals (Cont.)

m High degree of reliability

" The OS must also run non-stop.

m Otherissues
= Energy-efficiency
= Security
= Mobility

53

	幻灯片 1
	幻灯片 2: Today
	幻灯片 3: Earliest days: One batch job at a time
	幻灯片 4: 1960s: Operating System for Multitasking
	幻灯片 5: 1960s: MULTICS Fails
	幻灯片 6: 1969: BELL Labs in AT&T
	幻灯片 7: 1969: BELL Labs in AT&T
	幻灯片 8: 1969: How to Play Space Travel in PDP-7?
	幻灯片 9: 1969: BELL Labs in AT&T
	幻灯片 10: 1969: BELL Labs in AT&T
	幻灯片 11: 1971: Re-Architect UNICS
	幻灯片 12: 1973: Xerox PARC
	幻灯片 13: 1973: Xerox PARC
	幻灯片 14: 1979: Xerox PARC Alto
	幻灯片 15: 1983: Apple Lisa
	幻灯片 16: 1980: A Quick and Dirty Operating System
	幻灯片 17: 1980: A Quick and Dirty Operating System
	幻灯片 18: 1981: Microsoft
	幻灯片 19: 1981: MS-DOS
	幻灯片 20: 1990: Should OS and Hardware Decouple?
	幻灯片 21: 1990: Windows
	幻灯片 22: 1990: Two Thieves
	幻灯片 23: 1991: A New and Open OS
	幻灯片 24: 1991: A New and Open OS
	幻灯片 25: 1991: The First Email
	幻灯片 26: 1991: Free Software
	幻灯片 27: 1991: Linux and Open Source Project
	幻灯片 28: Nowadays
	幻灯片 29: Today
	幻灯片 30: What a happens when a program runs?
	幻灯片 31: Operating System (OS)
	幻灯片 32: 1st Piece: Virtualization
	幻灯片 33: System call
	幻灯片 34: The OS is a resource manager.
	幻灯片 35: Virtualizing the CPU
	幻灯片 36: Virtualizing the CPU (Cont.)
	幻灯片 37: Virtualizing the CPU (Cont.)
	幻灯片 38: Virtualizing the CPU (Cont.)
	幻灯片 39: Virtualizing Memory
	幻灯片 40: Virtualizing Memory (Cont.)
	幻灯片 41: Virtualizing Memory (Cont.)
	幻灯片 42: Virtualizing Memory (Cont.)
	幻灯片 43: Virtualizing Memory (Cont.)
	幻灯片 44: 2nd Piece: Concurrency
	幻灯片 45: Concurrency Example
	幻灯片 46: Concurrency Example (Cont.)
	幻灯片 47: Concurrency Example (Cont.)
	幻灯片 48: Why is this happening?
	幻灯片 49: 3rd Piece: Persistence
	幻灯片 50: Persistence (Cont.)
	幻灯片 51: Persistence (Cont.)
	幻灯片 52: Design Goals
	幻灯片 53: Design Goals (Cont.)

