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Today

 History of Operating Systems

 Three Easy Pieces
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Earliest days: One batch job at a time

IBM 704 at Langley Research Center (NASA), 1957
https://commons.wikimedia.org/w/index.php?curid=6455009
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1960s: Operating System for Multitasking
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1960s: MULTICS Fails
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1969: BELL Labs in AT&T

Ken Thompson
(1943-)

Space Travel Game
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1969: BELL Labs in AT&T

Digital Equipment Corporation PDP-7



Carnegie Mellon

8

Xi’an Jiaotong University

1969: How to Play Space Travel in PDP-7?

Operating System

Applications

Hardware
with Assembly

in ONE month!
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1969: BELL Labs in AT&T 

Dennis Ritchie
(1941-2011)
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1969: BELL Labs in AT&T 

“Your OS is much worse than MULTICS”

“Call it UNICS”
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1971: Re-Architect UNICS

UNICS → UNIX

 B Language: extended from BCPL

 A high-level programming language

 C Language: extended from B

 Decouple PL from hardware

 You are still using it!
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1973: Xerox PARC
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1973: Xerox PARC
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1979: Xerox PARC Alto

Steve Jobs
(1955-2011)
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1983: Apple Lisa
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1980: A Quick and Dirty Operating System

Tim Paterson
(1956-)

 Develop an OS with 4 months

 For 16bit Intel 8086 CPU

 QDOS
▪ Quick and Dirty Operating System
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1980: A Quick and Dirty Operating System

Paul Allen
(1953-2018)

Tim Paterson
(1956-)
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1981: Microsoft

Paul Allen
(1953-2018)

Bill Gates
(1955-)
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1981: MS-DOS

$50,000

QDOS

MS-DOS
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1990: Should OS and Hardware Decouple?

MS-DOS: 
IBM, Intel, Apple, …

Apple:
One OS for One Machine
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1990: Windows

Windows 3.0
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1990: Two Thieves

Well, Steve, I think there’s more than one 
way of looking at it. I think it’s more like 
we both had this rich neighbor named 
Xerox and I broke into his house to steal 
the TV set and found out that you had 
already stolen it.

You Are Stealing 
Our Operating System!
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1991: A New and Open OS

Andrew Tanenbaum
(1944-)
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1991: A New and Open OS

Linus Torvalds
(1969-)
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1991: The First Email
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1991: Free Software

Richard Stallman
(1953-)

 GPL

▪ Copy-Left

 GNU

▪ GNU is Not Unix

▪ Emacs, gcc, gdb, …
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1991: Linux and Open Source Project

 Applications

 Operating Systems
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Nowadays
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Today

 History of Operating Systems

 Three Easy Pieces
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What a happens when a program runs?

 A running program executes instructions.
1. The processor fetches an instruction from memory.

2. Decode: Figure out which instruction this is

3. Execute: i.e., add two numbers, access memory, check a condition, 
jump to function, and so forth.

4. The processor moves on to the next instruction and so on.
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Operating System (OS)

 Responsible for
▪ Making it easy to run programs

▪ Allowing programs to share memory

▪ Enabling programs to interact with devices

OS is in charge of making sure the system operates 
correctly and efficiently.
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1st Piece: Virtualization

 The OS takes a physical resource and transforms it into a 
virtual form of itself.

▪ Physical resource: Processor, Memory, Disk …

▪ The virtual form is more general, powerful and easy-to-use.

▪ Sometimes, we refer to the OS as a virtual machine.
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System call

 System call allows user to tell the OS what to do.
▪ The OS provides some interface (APIs, standard library).

▪ A typical OS exports a few hundred system calls.

▪ Run programs

▪ Access memory

▪ Access devices
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The OS is a resource manager.

 The OS manage resources such as CPU, memory and disk.

 The OS allows
▪ Many programs to run → Sharing the CPU

▪ Many programs to concurrently access their own instructions and 
data → Sharing memory

▪ Many programs to access devices → Sharing disks
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Virtualizing the CPU

 The system has a very large number of virtual CPUs.
▪ Turning a single CPU into a seemingly infinite number of CPUs.

▪ Allowing many programs to seemingly run at once
→ Virtualizing the CPU
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Virtualizing the CPU (Cont.)

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <assert.h>

5 #include "common.h"

6

7 int

8 main(int argc, char *argv[])

9 {

10 if (argc != 2) {

11 fprintf(stderr, "usage: cpu <string>\n");

12 exit(1);

13 }

14 char *str = argv[1];

15 while (1) {

16 Spin(1); // Repeatedly checks the time and 

returns once it has run for a second

17 printf("%s\n", str);

18 }

19 return 0;

20 }

Simple Example(cpu.c): Code That Loops and Prints
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Virtualizing the CPU (Cont.)

 Execution result 1.

prompt> gcc -o cpu cpu.c -Wall

prompt> ./cpu "A"

A

A

A

ˆC

prompt>

Run forever;  Only by pressing “Control-c” can we halt the program
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Virtualizing the CPU (Cont.)

 Execution result 2.

prompt> ./cpu A &  ./cpu B &  ./cpu C &  ./cpu D &

[1] 7353

[2] 7354

[3] 7355

[4] 7356

A

B

D

C

A

B

D

C

A

C

B

D

...

Even though we have only one processor, all four of 
programs seem to be running at the same time!
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Virtualizing Memory

 The physical memory is an array of bytes.

 A program keeps all of its data structures in memory.
▪ Read memory (load):

▪ Specify an address to be able to access the data

▪ Write memory (store):

▪ Specify the data to be written to the given address
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Virtualizing Memory (Cont.)

 A program that Accesses Memory (mem.c)

1 #include <unistd.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "common.h"

5

6 int

7 main(int argc, char *argv[])

8 {

9 int *p = malloc(sizeof(int));  // a1: allocate some 

memory

10 assert(p != NULL);

11 printf("(%d) address of p: %08x\n",

12 getpid(), (unsigned) p); // a2: print out the 

address of the memmory

13 *p = 0; // a3: put zero into the first slot of the memory

14 while (1) {

15 Spin(1);

16 *p = *p + 1;

17 printf("(%d) p: %d\n", getpid(), *p); // a4

18 }

19 return 0;

20 }
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Virtualizing Memory (Cont.)

 The output of the program mem.c

▪ The newly allocated memory is at address 00200000.

▪ It updates the value and prints out the result.

prompt> ./mem

(2134) memory address of p: 00200000

(2134) p: 1

(2134) p: 2

(2134) p: 3

(2134) p: 4

(2134) p: 5

ˆC
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Virtualizing Memory (Cont.)

 Running mem.c multiple times

▪ It is as if each running program has its own private memory.

▪ Each running program has allocated memory at the same 
address.

▪ Each seems to be updating the value at 00200000 

independently.

prompt> ./mem &; ./mem &

[1] 24113

[2] 24114

(24113) memory address of p: 00200000

(24114) memory address of p: 00200000

(24113) p: 1

(24114) p: 1

(24114) p: 2

(24113) p: 2

(24113) p: 3

(24114) p: 3

...



Carnegie Mellon

43

Xi’an Jiaotong University

Virtualizing Memory (Cont.)

 Each process accesses its own private virtual address 
space.
▪ The OS maps address space onto the physical memory.

▪ A memory reference within one running program does not affect
the address space of other processes.

▪ Physical memory is a shared resource, managed by the OS.
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2nd Piece: Concurrency

 The OS is juggling many things at once, first running one 
process, then another, and so forth.

 Modern multi-threaded programs also exhibit the 
concurrency problem.
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Concurrency Example
 A Multi-threaded Program (thread.c)

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker(void *arg) {

9 int i;

10 for (i = 0; i < loops; i++) {

11 counter++;

12 }

13 return NULL;

14 }

15

16 int

17 main(int argc, char *argv[])

18 {

19 if (argc != 2) {

20 fprintf(stderr, "usage: threads <value>\n");

21 exit(1);

22 }
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Concurrency Example (Cont.)

▪ The main program creates two threads.

▪ Thread: a function running within the same memory space. Each thread 
start running in a routine called worker().

▪ worker(): increments a counter

23 loops = atoi(argv[1]);

24 pthread_t p1, p2;

25 printf("Initial value : %d\n", counter);

26

27 Pthread_create(&p1, NULL, worker, NULL);

28 Pthread_create(&p2, NULL, worker, NULL);

29 Pthread_join(p1, NULL);

30 Pthread_join(p2, NULL);

31 printf("Final value : %d\n", counter);

32 return 0;

33 }
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Concurrency Example (Cont.)

 loops determines how many times each of the two 
workers will increment the shared counter in a loop.
▪ loops: 1000.

▪ loops: 100000.

prompt> gcc -o thread thread.c -Wall -pthread

prompt> ./thread 1000

Initial value : 0

Final value : 2000

prompt> ./thread 100000

Initial value : 0

Final value : 143012 // huh??

prompt> ./thread 100000

Initial value : 0

Final value : 137298 // what the??
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Why is this happening?

 Increment a shared counter → take three instructions.
1. Load the value of the counter from memory into register.

2. Increment it

3. Store it back into memory

 These three instructions do not execute atomically. →
Problem of concurrency happen.
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3rd Piece: Persistence

 Devices such as DRAM store values in a volatile.

 Hardware and software are needed to store data 
persistently.
▪ Hardware: I/O device such as a hard drive, solid-state drives(SSDs)

▪ Software:

▪ File system manages the disk.

▪ File system is responsible for storing any files the user creates.
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Persistence (Cont.)

 Create a file (/tmp/file) that contains the string “hello 
world”

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 int fd = open("/tmp/file", O_WRONLY | O_CREAT               

| O_TRUNC, S_IRWXU);

11 assert(fd > -1);

12 int rc = write(fd, "hello world\n", 13);

13 assert(rc == 13);

14 close(fd);

15 return 0;

16 }

open(), write(), and close() system calls are routed to the part of 

OS called the file system, which handles the requests
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Persistence (Cont.)

 What OS does in order to write to disk?
▪ Figure out where on disk this new data will reside

▪ Issue I/O requests to the underlying storage device

 File system handles system crashes during write.
▪ Journaling or copy-on-write

▪ Carefully ordering writes to disk
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Design Goals

 Build up abstraction
▪ Make the system convenient and easy to use.

 Provide high performance
▪ Minimize the overhead of the OS.

▪ OS must strive to provide virtualization without excessive overhead.

 Protection between applications
▪ Isolation: Bad behavior of one does not harm other and the OS 

itself.



Carnegie Mellon

53

Xi’an Jiaotong University

Design Goals (Cont.)

 High degree of reliability
▪ The OS must also run non-stop.

 Other issues
▪ Energy-efficiency

▪ Security

▪ Mobility
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