Bits, Bytes and Integers

Introduction to Computer Systems

Danfeng Shan
Xi'an Jiaotong University

Announcements

ICSServer已准备好，Tutorial时间暂定周日上午09：30
Lab 1 （Data Lab）已经公布，截止时间：03．15（周五）
实验课：3月9日（周六）上午8：00－12：00，西一楼实验中心机房

Today: Bits, Bytes, and Integers

Representing information as bits
Bit-level manipulations

Integers

Representation: unsigned and signed
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting
Representations in memory, pointers, strings

Everything is bits

Each bit is 0 or 1

By encoding／interpreting sets of bits in various ways
Computers determine what to do（instructions）
．．．and represent and manipulate numbers，sets，strings，etc．．．
Why bits？Electronic Implementation
Easy to store with bistable elements（双稳态器件）
Reliably transmitted on noisy and inaccurate wires

For example, can count in binary

Base 2 Number Representation

Represent 15213_{10} as 11101101101101_{2}

Represent 1.20_{10} as $1.0011001100110011[0011] \ldots{ }^{2}$

Represent 1.5213×10^{4} as $1.1101101101101_{2} \times 2^{13}$

Encoding Byte Values

Byte $=\mathbf{8}$ bits
Binary 00000000_{2} to 11111111_{2}
Decimal: 0_{10} to 255_{10}
Hexadecimal 00_{16} to FF_{16}
Base 16 number representation
Use characters ' 0 ' to ' 9 ' and ' A ' to ' F '
Write FA1D37B ${ }_{16}$ in C as
- 0xFA1D37B
- 0xfa1d37b

$\lambda^{e^{t}} p^{e^{c}} \beta^{n^{2}} n^{2}$		
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
B	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

$$
\text { 15213: } \underbrace{0011}_{3} \underbrace{1011}_{\mathrm{B}} \underbrace{0110}_{6} \underbrace{1101}_{\mathrm{D}}
$$

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit
char	1	1
short	2	2
int	4	4
long	4	8
float	4	4
double	8	8
pointer	4	8

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit
char	1	1
short	2	2
int	4	4
long	4	8
float	4	4
double	8	8
pointer	4	8

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit
char	1	1
short	2	2
int	4	4
long	4	8
float	4	4
double	8	8
pointer	4	8

Today: Bits, Bytes, and Integers

Representing information as bits

Bit-level manipulations
Integers
Representation: unsigned and signed
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting
Representations in memory, pointers, strings

Boolean Algebra

Developed by George Boole in 19th Century

Algebraic representation of logic
Encode "True" as 1 and "False" as 0

And
$A \& B=1$ when both $A=1$ and $B=1$

$\boldsymbol{\&}$	$\mathbf{0}$	$\mathbf{1}$
0	0	0
1	0	1

Not
$\sim A=1$ when $A=0$

\sim	$\mathbf{0}$	$\mathbf{1}$
	1	0

Or
$A \mid B=1$ when either $A=1$ or $B=1$ or both

\mid	$\mathbf{0}$	$\mathbf{1}$
0	0	1
1	1	1

Exclusive-Or (Xor)
$A^{\wedge} B=1$ when $A=1$ or $B=1$, but not both

General Boolean Algebras

Operate on Bit Vectors

Operations applied bitwise

01101001	01101001	01101001	
\& 01010101	01010101	01010101	~ 01010101
100000	0111110	0011110	01010

Bit-Level Operations in C

Operations \& I, ~, ^ Available in C
Apply to any "integral" data type
long, int, short, char, unsigned
View arguments as bit vectors
Arguments applied bit-wise

Contrast: Logic Operations in C

Contrast to Bit-Level Operators

Logic Operations: \&\&, ||, !
View 0 as "False"
Anything nonzero as "True"
Always return 0 or 1
Early termination
Examples (char data type)
!0x41 \rightarrow 0x00
$!0 \times 00 \rightarrow 0 \times 01$
$!!0 x 41 \rightarrow 0 x 01$
0×69 \&\& 0x55 \rightarrow 0x01
$0 x 69$ |। 0x55 \rightarrow 0x01
$p \& \& \quad$ p (avoids null pointer access)

Shift Operations

Left Shift: $\mathbf{x} \ll \mathbf{y}$

Shift bit-vector \mathbf{x} left \mathbf{y} positions

- Throw away extra bits on left

Fill with o's on right

Right Shift:

x >> y

Argument \mathbf{x}	01100010
$\ll 3$	00010000
Log. >> 2	00011000
Arith. >> 2	00011000

Shift bit-vector \mathbf{x} right \mathbf{y} positions
Throw away extra bits on right
Logical shift
Fill with 0's on left
Arithmetic shift
Replicate most significant bit on left

Argument \mathbf{x}	10100010
$\ll 3$	00010000
Log. >> 2	00101000
Arith. >> 2	11101000

Undefined Behavior

Shift amount < 0 or \geq word size

Today: Bits, Bytes, and Integers

Representing information as bits

Bit-level manipulations

 IntegersRepresentation: unsigned and signed, negation
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting
Representations in memory, pointers, strings

Question?

int foo = -1; unsigned bar = 1;
(foo < bar) == true ?

Encoding "Integers"

Unsigned

Given a bit vector x, w bits long...

Signed (twos complement)

$$
\operatorname{B2T}(x)=-x_{w-1} \cdot 2^{w-1}+\sum_{i=0}^{w-2} x_{i} \cdot 2^{i}
$$

Examples (w = 5)

± 16	8	4	2	1	$0+8+0+2+0=10$	
0	1	0	1	0		
16	8	4	2	1	$16+8+0+2+0=$	26
1	0	1	1	0		
-16	8	4	2	1	$-16+8+0+2+0=-10$	

Negation: Complement \& Increment

Negate through complement and increase

$$
\sim x+1==-x
$$

Why?

$$
\begin{aligned}
&-x+x= \\
& \sim x+x= \\
& \sim x+1111 \ldots 111==-1 \\
& \sim x+x+1= \\
&(\sim x+1)+x= \\
& \sim x+1= \\
& \sim 0
\end{aligned}
$$

Example: $x=15213$

	Decimal	Hex		Binary	
\mathbf{x}	15213	3B 6 D	00111011	01101101	
$\sim \mathbf{x}$	-15214	C4 92	11000100	10010010	
$\sim x+1$	-15213	C4 93	11000100	10010011	
\mathbf{y}	-15213	C4 93	11000100	10010011	

Complement \& Increment Examples

$$
x=\mathbf{0}
$$

	Decimal	Hex	Binary	
0	0	00 00	0000000000000000	
~ 0	-1	FF FF	1111111111111111	
$\sim 0+1$	0	00 00	0000000000000000	

$x=T_{\text {min }}$

	Decimal	Hex		Binary	
\mathbf{x}	-32768	80	00	10000000	
00000000					
$\sim \mathbf{x}$	32767	$7 F$	FF	01111111	
$\sim \mathbf{x + 1}$	-32768	80	00	10000000	

Oops! It's still negative!

Eight negative values:
$-1,-2, \ldots,-8$

Mathematicians would prefer it if a 4-bit signed number could represent values $-8 . . .8$, but that's $2^{4}+1$ values, so they won't all fit.

Eight nonnegative values: $0,1, \ldots, 7$

What if we made a 4-bit signed number only represent values $-7 . . .7$? Then we wouldn't be using bit pattern 1000...

Today: Bits, Bytes, and Integers

Representing information as bits

Bit-level manipulations

Integers
Representation: unsigned and signed, negation
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting
Representations in memory, pointers, strings

Mapping Between Signed \& Unsigned

Two's Complement

Mappings between unsigned and two's complement numbers:
Keep bit representations and reinterpret

Relation between Signed \& Unsigned

Large positive weight
becomes
Large negative weight

Mapping Signed \leftrightarrow Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-16

Conversion Visualized

2's Comp. \rightarrow Unsigned Ordering Inversion
Negative \rightarrow Big Positive

Signed vs. Unsigned in C

Constants
By default are considered to be signed integers
Unsigned if have "U" as suffix
OU, 4294967259U

Casting
Explicit casting between signed \& unsigned same as U2T and T2U int tx, ty;
unsigned ux, uy;

```
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
int fun(unsigned u);
uy = fun(tx);
```


Casting Surprises

Expression Evaluation

If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
Including comparison operations <, >, ==, <=, >=
Examples:

Constant 1	Constant 2	Relation	Evaluation
0	OU	$==$	Unsigned
-1	0	$<$	Signed
-1	OU	$>$	Unsigned
INT_MAX	INT_MIN	$>$	Signed
(unsigned) INT_MAX	INT_MIN	$<$	Unsigned
-1	-2	$>$	Signed
(unsigned) -1	-2	$<$	Unsigned
INT_MAX	$($ (unsigned) INT_MAX) +1	Unsigned	
INT_MAX	(int) (((unsigned) INT_MAX) +1$)$	Signed	

Question?

```
int foo = -1;
unsigned bar = 1;
foo < bar == true ?
```


Summary
 Casting Signed \leftrightarrow Unsigned: Basic Rules

Bit pattern is maintained
But reinterpreted
Can have unexpected effects: adding or subtracting $\mathbf{2}^{\mathbf{w}}$

Expression containing signed and unsigned int
int is cast to unsigned!!

Today: Bits, Bytes, and Integers

Representing information as bits

Bit-level manipulations

Integers
Representation: unsigned and signed, negation
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting
Representations in memory, pointers, strings

Question?

```
int x = 0x8000;
short sx = (short) x;
int y = sx;
```


Sign Extension and Truncation

Sign Extension

Truncation

Sign Extension: Simple Example

Truncation: Simple Example

No sign change

	No sign change					Sign change					
	-16	8	4	2	1		-16	8	4	2	1
$2=$	0	0	0	1	0	$10=$	0	1	0	1	0
		-8	4	2	1			-8	4	2	1
$2=$		0	0	1	0	$-6=$		1	0	1	0
	-16	8	4	2	1		-16	8	4	2	1
$-6=$	1	1	0	1	0	$-10=$	1	0	1	1	0
		-8	4	2	1			-8	4	2	1
$-6=$		1	0	1	0	$6=$		0	1	1	0

Question?

```
int x = 0x8000;
short sx = (short) x;
int y = sx;
```


Today: Bits, Bytes, and Integers

Representing information as bits

Bit-level manipulations

Integers
Representation: unsigned and signed
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting
Representations in memory, pointers, strings

Unsigned Addition

Operands: w bits

True Sum: w+1 bits
Discard Carry: w bits

Standard Addition Function
Ignores carry output

unsigned char \begin{tabular}{r}
11101001

$+\quad 11010101$

\hline

E9

$+\quad D 5$

+

\hline
\end{tabular}

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
B	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Unsigned Addition

Operands: w bits

True Sum: w+1 bits
Discard Carry: w bits

Standard Addition Function

Ignores carry output

unsigned char \begin{tabular}{r}
11101001

$+\quad 11010101$

\hline 110111110

\hline 10111110

E 9

+D 5

\hline BE

\quad

233

+213

\hline$\frac{446}{190}$
\end{tabular}

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
B	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Visualizing (Mathematical) Integer Addition

Integer Addition
4-bit integers u, v
Compute true sum $\operatorname{Add}_{4}(u, v)$
Values increase linearly with u and v

Forms planar surface
$\operatorname{Add}_{4}(u, v)$

Visualizing Unsigned Addition

Wraps Around
If true sum $\geq 2^{w}$
At most once

True Sum

Overflow

Two's Complement Addition

Operands: w bits

True Sum: w+1 bits
Discard Carry: w bits

TAdd and UAdd have Identical Bit-Level Behavior
Signed vs. unsigned addition in C :
int $s, t, u, v ;$
$s=(i n t)($ (unsigned) $u+(u n s i g n e d) v) ;$
$t=u+v$
Will give $s==t$

$$
\begin{array}{r}
11101001 \\
+\quad 11010101 \\
\hline 110111110 \\
\hline 10111110
\end{array} \quad \begin{array}{r}
\mathrm{E} 9 \\
+\mathrm{D} 5 \\
\hline \mathrm{BE}
\end{array} \quad \begin{array}{r}
-23 \\
+-43 \\
\hline-66 \\
\hline-66
\end{array}
$$

Visualizing 2's Complement Addition

NegOver
Values
4-bit two's comp.
Range from -8 to +7
Wraps Around
If sum $\geq 2^{w-1}$
Becomes
negative
At most once
If sum $<-2^{w-1}$
Becomes
positive
At most once

TAdd Overflow

Functionality

Today: Bits, Bytes, and Integers

Representing information as bits

Bit-level manipulations

Integers
Representation: unsigned and signed
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting
Representations in memory, pointers, strings

Shifting

Left Shift: $\mathbf{x} \ll \mathbf{y}$

Shift bit-vector x left y positions
Throw away extra bits on left Fill with 0's on right
Equivalent to multiplying by 2^{y}

Right Shift: x >> y

Shift bit-vector x right y positions
Throw away extra bits on right
Two kinds:
"Logical": Fill with 0's on left
"Arithmetic": Replicate most significant bit on left
Almost equivalent to dividing by 2^{y}

Undefined Behavior (in C)

Shift amount <0 or \geq word size

$$
\text { Argument x } 01100010
$$

 \(\ll 300010000\)
 Logical >> 200011000
 Arithmetic >> 200011000
Argument x 10100010
$\ll 300010000$
Logical >> 200101000
Arithmetic >> 211101000

Multiplication

Goal: Computing Product of w-bit numbers x, y

Either signed or unsigned
But, exact results can be bigger than w bits
Unsigned: up to $2 w$ bits
Result range: $0 \leq x^{*} y \leq\left(2^{w}-1\right)^{2}=2^{2 w}-2^{w+1}+1$
Two's complement min (negative): Up to $2 w-1$ bits
Result range: $x^{*} y \geq\left(-2^{w-1}\right)^{*}\left(2^{w-1}-1\right)=-2^{2 w-2}+2^{w-1}$
Two's complement max (positive): Up to $2 w$ bits, but only for $\left(T M i n_{w}\right)^{2}$ Result range: $x^{*} y \leq\left(-2^{w-1}\right)^{2}=2^{2 w-2}$
So, maintaining exact results...
would need to keep expanding word size with each product computed is done in software, if needed

Unsigned Multiplication in C

Operands: w bits

Discard w bits: w bits

Standard Multiplication Function

Ignores high order w bits

	1110	1001				
$*$	1101	0101				
1100	0001	1101	1101		1101	1101
:---	:---		E9			
---:						

Signed Multiplication in C

Operands: w bits

True Product: 2*w bits

Discard w bits: w bits

Standard Multiplication Function

Ignores high order w bits
Some of which are different for signed vs. unsigned multiplication
Lower bits are the same

Power-of-2 Multiply with Shift

Operation

$\mathbf{u} \ll k$ gives $u * \mathbf{2}^{\mathbf{k}}$
Both signed and unsigned
Operands: w bits

Examples

$$
\begin{aligned}
& ==u * 3 \times 8 \\
& (u \ll 5)-(u \ll 3)==\quad u * 24
\end{aligned}
$$

Most machines shift and add faster than multiply
Compiler generates this code automatically

Today: Bits, Bytes, and Integers

Representing information as bits
Bit-level manipulations
Integers
Representation: unsigned and signed
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting

Representations in memory, pointers, strings

Byte-Oriented Memory Organization

Programs refer to data by address
Imagine all of RAM as an enormous array of bytes
An address is an index into that array
A pointer variable stores an address
System provides a private address space to each "process"
A process is an instance of a program, being executed
An address space is one of those enormous arrays of bytes
Each program can see only its own code and data within its enormous array We'll come back to this later ("virtual memory" classes)

Machine Words

Any given computer has a "Word Size"

Nominal size of integer-valued data
and of addresses

Historically, most machines used 32 bits (4 bytes) as word size Limits addresses to 4GB (2^{32} bytes)

Recently, machines have 64-bit word size
Potentially, could have 16 EB (exabytes) of addressable memory
That's 18.4×10^{18} bytes

Machines still support multiple data formats
Fractions or multiples of word size
Always integral number of bytes

Addresses Always Specify Byte Locations

Address of a word is address of the first byte in the word
Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Bytes Addr.

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
pointer	4	8	8

Question?

```
struct foo {
    char mem1[3]; // 3 bytes
    int mem2; // 4 bytes
    char mem3; // 1 byte
};
sizeof(struct foo) = ?
```


Byte Ordering

So, how are the bytes within a multi-byte word ordered in memory?

Conventions

Big Endian: Sun, PPC Mac, network packet headers
Least significant byte has highest address
Little Endian: x86, ARM processors running Android, iOS, and
Windows
Least significant byte has lowest address

Byte Ordering Example

Example

Variable x has 4 -byte value of 0×01234567
Address given by $\& x$ is 0×100

Big Endian

Little Endian
$0 \times 100 \quad 0 \times 101 \quad 0 \times 102 \quad 0 \times 103$

		67	45	23	01		

Representing Integers

Decimal: 15213
Binary: 0011101101101101 Hex: $\begin{array}{lllll} & 3 & B & 6 & D\end{array}$
int $A=15213$;

int $\mathrm{B}=-15213$;

IA32, x86-64
F 4
FF

long int $C=15213$;
IA32

Two's complement representation

Examining Data Representations

Code to Print Byte Representation of Data

Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;
void show_bytes (pointer start, size_t len) {
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}
```

Printf directives:
\%p: Print pointer
\%x: Print Hexadecimal

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```


Result (Linux x86-64):

int $a=15213 ;$	
$0 x 7 f f f b 7 f 71 d b c$	$6 d$
$0 x 7 f f f b 7 f 71 d b d$	$3 b$
$0 x 7 f f f b 7 f 71 d b e$	00
$0 x 7 f f f b 7 f 71 d b f$	00

Representing Pointers

```
int B = -15213;
int *P = &B;
```

Sun	IA32	x86-64
EF	AC	3C
FF	28	1B
FB	F5	FE
2C	FF	82
		FD
		7F
		00
		00

Different compilers \& machines assign different locations to objects Even get different results each time run program

Representing Strings

Strings in C

$$
\text { char } S[6]=" 18213 " ;
$$

Represented by array of characters
Each character encoded in ASCII format
Standard 7-bit encoding of character set
Character "0" has code 0x30

- Digit i has code 0x30+i

String should be null-terminated
Final character $=0$
Compatibility
Byte ordering not an issue

IA32	Sun
31	
38	
32	
31	
33	
00	\longleftrightarrow
31	

Representing x86 machine code

x86 machine code is a sequence of bytes
Grouped into variable-length instructions, which look like strings...
But they contain embedded little-endian numbers...
Example Fragment

