Machine-Level Programming V: Advanced Topics

COMP400727: Introduction to Computer Systems

Danfeng Shan
Xi'an Jiaotong University

Today

- Memory Layout
- Buffer Overflow
 - Vulnerability
 - Protection
 - Bypassing Protection

128

MB

not drawn to scale

randomized

randomized

Shared

Libraries

Stack

₩rsp

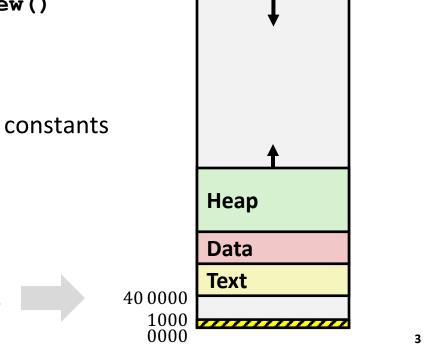
x86-64 Linux Memory Layout

Stack

Runtime stack (8MB limit)

e.g., local variables

Heap


- Dynamically allocated as needed
- When call malloc(), calloc(), new()

Data

- Statically allocated data
- e.g., global vars, static vars, string constants

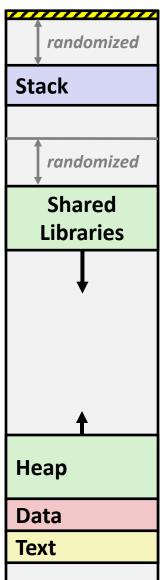
Text / Shared Libraries

- Executable machine instructions
- Read-only

8MB-

0000 7FFF F800 0000

 $(2^{47} - 4096 =) 00007FFFFFFFF000$


not drawn to scale

Memory Allocation Example

0000 7FFF FFFF F000

40 0000

```
char big array[1L<<24]; /* 16 MB */
char huge array[1L<<31]; /* 2 GB */</pre>
int global = 0;
int useless() { return 0; }
int main ()
{
    void *phuge1, *psmall2, *phuge3, *psmall4;
    int local = 0;
    phuge1 = malloc(1L << 28); /* 256 MB */</pre>
    psmall2 = malloc(1L << 8); /* 256 B */
    phuge3 = malloc(1L << 32); /* 4 GB */</pre>
    psmall4 = malloc(1L << 8); /* 256 B */
 /* Some print statements ... */
```


Where does everything go?

not drawn to scale

randomized

Stack

x86-64 Example Addresses

address range ~2⁴⁷

local
phuge1
phuge3
psmall4
psmall2
big_array
huge_array
main()
useless()

randomized **Shared** 0×00007 ffe4d3be87c Libraries 0x00007f7262a1e010 and Huge 0x00007f7162a1d010 **Malloc Blocks** $0 \times 0000000008359d120$ $0 \times 0000000008359d010$ $0 \times 00000000080601060$ 0x00000000040060c $0 \times 0000000000400590$ Heap (Exact values can vary) Data **Text** 40 0000

0000 7FFF FFFF F000

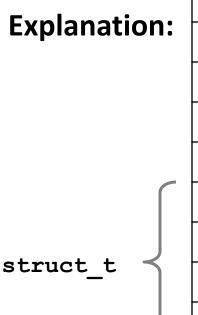
Today

- Memory Layout
- Buffer Overflow
 - Vulnerability
 - Protection
 - Bypassing Protection

Memory Referencing Bug Example

```
typedef struct {
  int a[2];
  double d;
} struct_t;

double fun(int i) {
  volatile struct_t s;
  s.d = 3.14;
  s.a[i] = 1073741824; /* Possibly out of bounds */
  return s.d;
}
```


```
fun (0) -> 3.1400000000
fun (1) -> 3.1400000000
fun (2) -> 3.1399998665
fun (3) -> 2.0000006104
fun (6) -> Segmentation fault
fun (8) -> 3.1400000000
```

Result is system specific

Memory Referencing Bug Example

```
typedef struct {
  int a[2];
  double d;
} struct_t;
```

```
fun(0)
             3.1400000000
fun (1)
        ->
             3.1400000000
fun (2)
        ->
             3.1399998665
        ->
             2.0000006104
fun(3)
        -> Segmentation fault
fun(6)
fun (8)
             3.1400000000
        ->
```



```
555
                8
Critical State
Critical State
                6
Critical State
                5
Critical State
                4
                3
d7
   ... d4
d3 ... d0
   a[1]
   a[0]
                0
```

Location accessed by fun(i)

Such Problems are a BIG Deal

- Generally called a "buffer overflow"
 - When exceeding the memory size allocated for an array
- Why a big deal?
 - It's the #1 technical cause of security vulnerabilities
- Most common form
 - Unchecked lengths on string inputs
 - Particularly for bounded character arrays on the stack
 - sometimes referred to as stack smashing

String Library Code

Implementation of Unix function gets ()

```
/* Get string from stdin */
char *gets(char *dest)
{
   int c = getchar();
   char *p = dest;
   while (c != EOF && c != '\n') {
        *p++ = c;
        c = getchar();
   }
   *p = '\0';
   return dest;
}
```

- No way to specify limit on number of characters to read
- Similar problems with other library functions
 - strcpy, strcat: Copy strings of arbitrary length
 - scanf, fscanf, sscanf, when given %s conversion specification

Vulnerable Buffer Code

```
/* Echo Line */
void echo()
{
    char buf[4]; /* Way too small! */
    gets(buf);
    puts(buf);
}
```

```
void call_echo() {
    echo();
}
```

```
unix>./bufdemo-nsp
Type a string: 01234567890
01234567890
```

```
unix>./bufdemo-nsp
Type a string: 012345678901
012345678901
Segmentation Fault
```

Buffer Overflow Disassembly

echo:

```
000000000001159 <echo>:
    1159: 53
                                        %rbx
                                 push
    115a: 48 83 ec 10
                                        $0x10,%rsp
                                  sub
    115e: 48 8d 5c 24 0c
                                 lea
                                        0xc(%rsp),%rbx
    1163: 48 89 df
                                        %rbx,%rdi
                                 mov
    1166: b8 00 00 00 00
                                        $0x0,%eax
                                 mov
    116b: e8 d0 fe ff ff
                                 call
                                        1040 <gets@plt>
    1170: 48 89 df
                                        %rbx,%rdi
                                 mov
    1173: e8 b8 fe ff ff
                                 call
                                        1030 <puts@plt>
    1178: 48 83 c4 10
                                        $0x10,%rsp
                                 add
    117c: 5b
                                        %rbx
                                 pop
    117d: c3
                                 ret
```

call_echo:

117e:	48 83 ec 0	8 s	sub \$0x8,%rsp
1182:	ъ8 00 00 0	0 00 n	nov \$0x0,%eax
1187:	e8 c5 ff f	f ff d	callq 1189 <echo></echo>
118c:	48 83 c4 0	8 a	add \$0x8,%rsp
1190:	c 3	1	ret

Buffer Overflow Stack Example

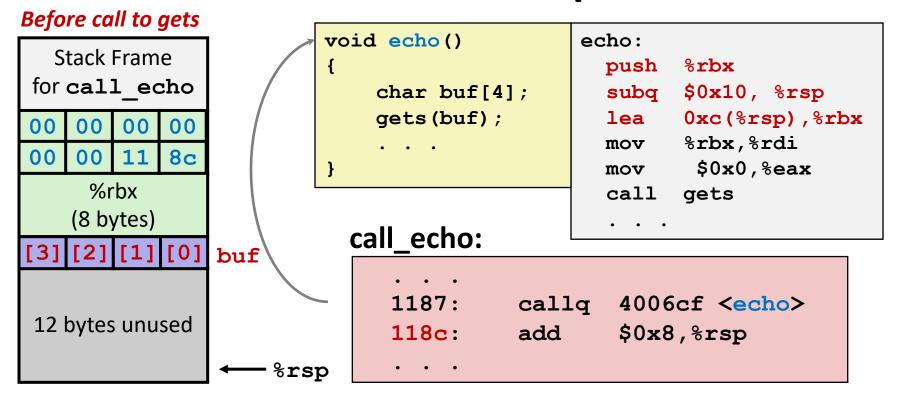
Before call to gets

```
Stack Frame for call_echo

Return Address (8 bytes)

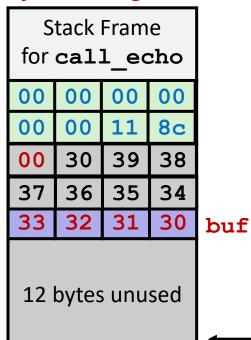
%rbx (8 bytes)

[3] [2] [1] [0] buf


12 bytes unused

$rsp
```

```
/* Echo Line */
void echo()
{
    char buf[4]; /* Way too small! */
    gets(buf);
    puts(buf);
}
```


```
echo:
   push %rbx
   subq $0x10, %rsp
   lea   0xc(%rsp),%rbx
   mov %rbx,%rdi
   mov $0x0,%eax
   call gets
   . . .
```

Buffer Overflow Stack Example

Buffer Overflow Stack Example #1

After call to gets

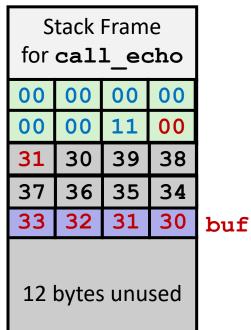

```
void echo()
{
    char buf[4];
    gets(buf);
    . . .
}
```

```
echo:
  push %rbx
  subq $0x10, %rsp
  lea  0xc(%rsp),%rbx
  mov %rbx,%rdi
  mov $0x0,%eax
  call gets
  . . .
```

call_echo:

```
... callq 4006cf <echo>
118c: add $0x8,%rsp
...
```

```
unix>./bufdemo-nsp
Type a string:01234567890
01234567890
```


"01234567890**0**"

Overflowed buffer, but did not corrupt state

%rsp

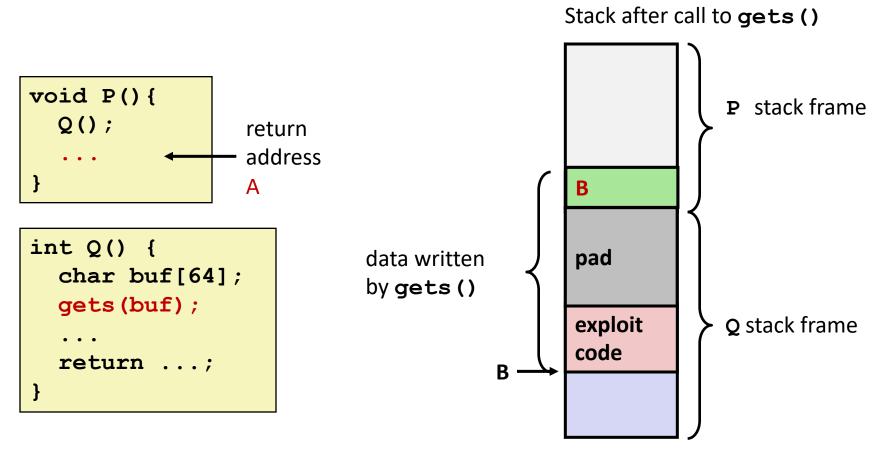
Buffer Overflow Stack Example #1

After call to gets


```
void echo()
{
    char buf[4];
    gets(buf);
    . . .
}
```

```
push %rbx
subq $0x10, %rsp
lea 0xc(%rsp),%rbx
mov %rbx,%rdi
mov $0x0,%eax
call gets
. . .
```

call_echo:


```
....
1187: callq 4006cf <echo>
118c: add $0x8,%rsp
....
```

```
unix>./bufdemo-nsp
Type a string:012345678901
012345678901
segmentation fault
```

Program "returned" to 0x1100, and then crashed.

%rsp

Code Injection Attacks

- Input string contains byte representation of executable code
- Overwrite return address A with address of buffer B
- When Q executes ret, will jump to exploit code

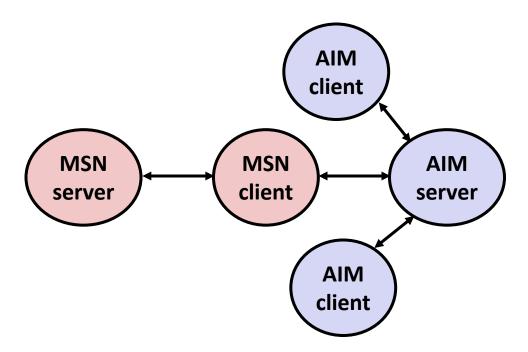
Exploits Based on Buffer Overflows

- Buffer overflow bugs can allow remote machines to execute arbitrary code on victim machines
- Distressingly common in real programs
 - Programmers keep making the same mistakes < < </p>
 - Recent measures make these attacks much more difficult
- Examples across the decades
 - Original "Internet worm" (1988)
 - "IM wars" (1999)
 - Twilight hack on Wii (2000s)
 - ... and many, many more
- You will learn some of the tricks in attacklab
 - Hopefully to convince you to never leave such holes in your programs!!

Example: the original Internet worm (1988)

Exploited a few vulnerabilities to spread

- Early versions of the finger server (fingerd) used gets () to read the argument sent by the client:
 - finger dfshan@xjtu.edu.cn
- Worm attacked fingerd server by sending phony argument:
 - finger "exploit-code padding new-returnaddress"
 - exploit code: executed a root shell on the victim machine with a direct TCP connection to the attacker.


Once on a machine, scanned for other machines to attack

- lacktriangle invaded \sim 6000 computers in hours (10% of the Internet \odot)
 - see June 1989 article in Comm. of the ACM
- the young author of the worm was prosecuted...
- and CERT was formed... still homed at CMU

Example 2: IM War

July, 1999

- Microsoft launches MSN Messenger (instant messaging system).
- Messenger clients can access popular AOL Instant Messaging Service (AIM) servers

IM War (cont.)

August 1999

- Mysteriously, Messenger clients can no longer access AIM servers
- Microsoft and AOL begin the IM war:
 - AOL changes server to disallow Messenger clients
 - Microsoft makes changes to clients to defeat AOL changes
 - At least 13 such skirmishes
- What was really happening?
 - AOL had discovered a buffer overflow bug in their own AIM clients
 - They exploited it to detect and block Microsoft: the exploit code returned a 4-byte signature (the bytes at some location in the AIM client) to server
 - When Microsoft changed code to match signature, AOL changed signature location

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT) From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!

To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you might find interesting because you are an Internet security expert with experience in this area. I have also tried to contact AOL but received no response.

I am a developer who has been working on a revolutionary new instant messaging client that should be released later this year.

. . .

It appears that the AIM client has a buffer overrun bug. By itself this might not be the end of the world, as MS surely has had its share. But AOL is now *exploiting their own buffer overrun bug* to help in its efforts to block MS Instant Messenger.

. . . .

Since you have significant credibility with the press I hope that you can use this information to help inform people that behind AOL's friendly exterior they are nefariously compromising peoples' security.

Sincerely,
Phil Bucking
Founder, Bucking Consulting
philbucking@yahoo.com

It was later determined that this email originated from within Microsoft!

Today

- Memory Layout
- Buffer Overflow
 - Vulnerability
 - Protection
 - Bypassing Protection

What to Do About Buffer Overflow Attacks

- Avoid overflow vulnerabilities
- Employ system-level protections
- Have compiler use "stack canaries"

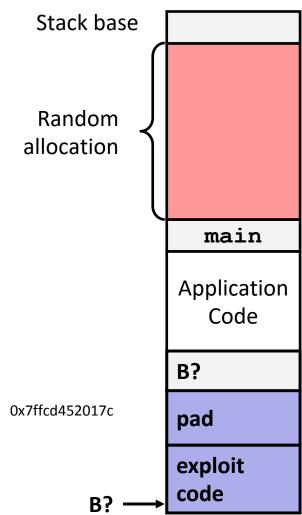
Lets talk about each...

1. Avoid Overflow Vulnerabilities in Code (!)

```
/* Echo Line */
void echo()
{
    char buf[4];
    fgets(buf, 4, stdin);
    puts(buf);
}
```

- For example, use library routines that limit string lengths
 - fgets instead of gets
 - strncpy instead of strcpy
 - Don't use scanf with %s conversion specification
 - Use fgets to read the string
 - Or use %ns where n is a suitable integer

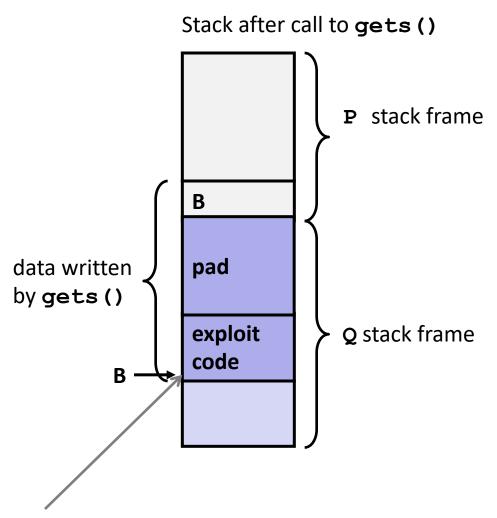
2. System-Level Protections Can Help


Randomized stack offsets

- At start of program, allocate random amount of space on stack
- Shifts stack addresses for entire program
- Makes it difficult for hacker to predict beginning of inserted code
- e.g., 5 executions of memory allocation code

local

0x7ffe4d3be87c 0x7fff75a4f9fc 0x7ffeadb7c80c 0x7ffeaea2fdac 0x7ffcd452017c


 Stack repositioned each time program executes

2. System-Level Protections Can Help

Non-executable memory

- Older x86 CPUs would execute machine code from any readable address
- x86-64 added a way to mark regions of memory as not executable
- Immediate crash on jumping into any such region
- Current Linux and Windows mark the stack this way

Any attempt to execute this code will fail

3. Stack Canaries Can Help

Idea

- Place special value ("canary") on stack just beyond buffer
- Check for corruption before exiting function

GCC Implementation

- -fstack-protector
- Now the default (disabled earlier)

```
unix>./bufdemo-sp
Type a string:0123
0123456
```

```
unix>./bufdemo-sp
Type a string:01234
*** stack smashing detected ***
```

Protected Buffer Disassembly

echo:

```
1169:
         push
                 %rbx
                 $0x10,%rsp
116a:
         sub
                 %fs:0x28,%rax
116e:
         mov
1177:
                 %rax,0x8(%rsp)
         mov
117c:
                 %eax,%eax
         xor
117e:
         lea
                 0x4(%rsp),%rbx
1183:
                 %rbx,%rdi
         mov
1186:
         callq 1050 <gets@plt>
118b:
                 %rbx,%rdi
         mov
118e:
                 1030 <puts@plt>
         call
1193:
                 0x8(%rsp),%rax
         mov
1198:
         sub
                 %fs:0x28,%rax
                 11a9 < echo + 0x40 >
11a1:
         jne
11a3:
         add
                 $0x10,%rsp
11a7:
                 %rbx
         pop
11a8:
         ret
11a9:
         call
                 1040 < stack chk fail@plt>
```

Setting Up Canary

Before call to gets

```
Stack Frame for call_echo

Return Address (8 bytes)

Canary (8 bytes)

[3] [2] [1] [0] buf
```

```
/* Echo Line */
void echo()
{
    char buf[4]; /* Way too small! */
    gets(buf);
    puts(buf);
}
```

```
← %rsp
```

```
echo:

. . .

mov %fs:0x28, %rax # Get canary

mov %rax, 0x8(%rsp) # Place on stack

xor %eax, %eax # Erase register

. . .
```

Checking Canary

After call to gets

```
Stack Frame
for call echo
 Return Address
    (8 bytes)
    Canary
    (8 bytes) 00
33
    32 | 31
             30
```

```
/* Echo Line */
void echo()
{
    char buf[4]; /* Way too small! */
    gets(buf);
    puts(buf);
}
```

Input: *0123*

LSB of canary is 0x00

```
buf
← %rsp
```

```
echo:
1193
              0x8(%rsp),%rax
                                 # Retrieve from stack
        mov
1198
        sub
              %fs:0x28,%rax
                                 # Compare to canary
11a1
              11a9 < echo + 0x40 >
        jne
                                 # If not same, error
11a9
                                 # FAIL
        call
                stack chk fail
```

Return-Oriented Programming Attacks

Challenge (for hackers)

- Stack randomization makes it hard to predict buffer location
- Marking stack non-executable makes it hard to insert binary code

Alternative Strategy

- Use existing code
 - Part of the program or the C library
- String together fragments to achieve overall desired outcome
- Does not overcome stack canaries

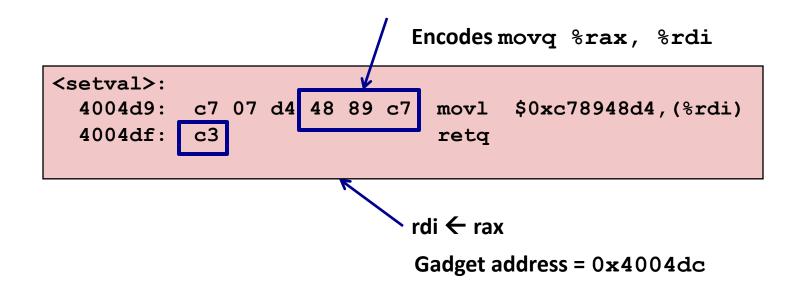
Construct program from gadgets

- Sequence of instructions ending in ret
 - Encoded by single byte 0xc3
- Code positions fixed from run to run
- Code is executable

Gadget Example #1

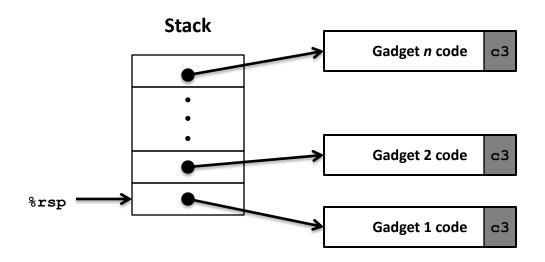
```
long ab_plus_c
  (long a, long b, long c)
{
   return a*b + c;
}
```

```
0000000004004d0 <ab_plus_c>:
    4004d0:    48 0f af fe imul %rsi,%rdi
    4004d4:    48 8d 04 17 lea (%rdi,%rdx,1),%rax
    retq

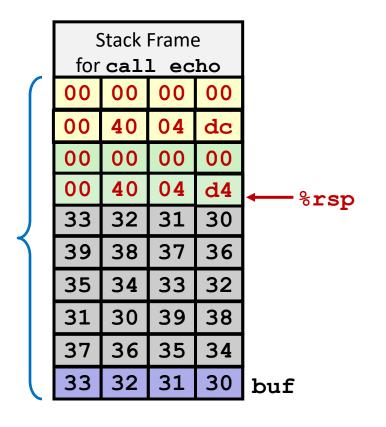

rax ← rdi + rdx

Gadget address = 0x4004d4
```

Use tail end of existing functions


Gadget Example #2

```
void setval(unsigned *p) {
    *p = 3347663060u;
}
```

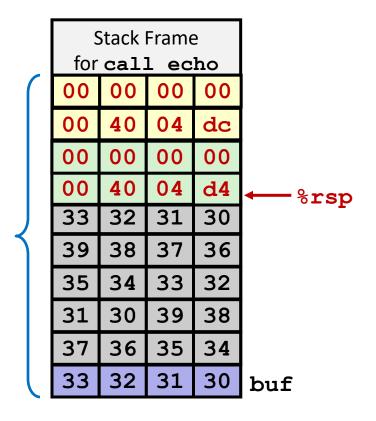


Repurpose byte codes

ROP Execution

- Trigger with ret instruction
 - Will start executing Gadget 1
- Final ret in each gadget will start next one
 - ret: pop address from stack and jump to that address

Crafting an ROP Attack String

Gadget #1


- $0 \times 4004 d4$ rax \leftarrow rdi + rdx
- Gadget #2
 - 0x4004dc rdi ← rax
- Combination

Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 d4 04 40 00 00 00 00 dc 04 40 00 00 00 00

Multiple gadgets will corrupt stack upwards

What Happens When echo Returns?

- Echo executes ret
 - Starts Gadget #1
- Gadget #1 executes ret
 - Starts Gadget #2
- 3. Gadget #2 executes ret
 - Goes off somewhere ...

Today

- Memory Layout
- Buffer Overflow
 - Vulnerability
 - Protection
 - Bypassing Protection