
XJTU-ICS
BombLab && AttackLab

Yunguang Li, 2024-3-23 Some Contents from CMU-15-213

ü Bomblab

ü Attacklab

ü Some Tools

ü Command

ü Some Cases

Outline

• Start early !!!

• Think more before Asking !

• Keep a log while working !

• Compare and think after finishing !

Some advice

An exercise in reading x86-64 assembly code.

A chance to practice using GDB (a debugger).

What is Bomb Lab?

Why ?

• x86 assembly is low level machine code. Useful
for understanding security exploits or tuning
performance.

• GDB can save you days of work in future labs
(Malloc) and can be helpful long after you
finish this class.

• %rax
• return value

• %rdi, ..., %r9
• Arguments

• %r10, %r11
• Caller-saved

• %rbx, %r12, %r13, %r14
• Callee-saved

• %rsp %rbp: Special

Linux x86-64 ABI

We’re letting you hijack programs by running buffer overflow
attacks on them…

To understand stack discipline and stack frames

To defeat relatively secure programs with return oriented
programming

What’s Attack Lab ?

• Local string variables are stored on
the stack

• Some C functions do not check sizes
of strings

Buffer Overflows

• You can write a string that
overwrites the return address

• Activity 1 steps through an
example of overwriting the
return address on the stack

Buffer Overflows

• Disassemble to generate assembly file
• $ objdump -d [name of executable] > [any file name]

• Saves the assembly code of the executable into the file.
• The objdump assembly file address is not real virtual

address!!!

Tools: Objdump

• $ man sscanf
• you are allowed to look up documentation of functions
• man pages are your friend :)

• sscanf: string scan format
• parses a string provided as an argument to the function

After this code snippet is run, a = 123 and b = 456

Tools: man

GDB is a powerful debugger-- let’s you inspect your program as
it’s executing.

Fundamental Instruction:
• You can open gdb by typing into the shell:

• $ gdb
• Type gdb and then a binary to specify which program to run

• $ gdb <binary>
• This is the notation we’ll be using for the rest of the slides:

• $ cd // The command should be typed in the bash shell
• (gdb) break // The command should be typed in GDB

Tools: GDB

Disassemble: displays assembly

• (gdb) disas(disassemble) + (func) // show the assembly
code of specific func

Helpful GDB Commands

Breakpoints: stops execution of program when it reaches
certain point
• break function_name: breaks once you call a specific
function
• break *0x…: breaks when you execute instruction at a
certain address
• info b: displays information about all breakpoints currently
set
• disable #: disables breakpoint with id equal to #

Helpful GDB Commands

Navigating through assembly:
• stepi: moves one instruction forward, will step into
functions encountered
• nexti: moves one instruction forward, skips over functions
called
• c: continues execution until next breakpoint is hit

Helpful GDB Commands

Don’t understand what a big block of assembly does? GDB
Need to figure out what’s in a specific memory address? GDB
Can’t trace how 4 – 6 registers are changing over time? GDB
Have no idea how to start the assignment? BombLab/Attacklab Tutorial
Need to know how to use certain GDB commands? BombLab Tutorial

Also useful: http://ics.dfshan.net/GDB-Usage-Tutorial
Don’t know what an assembly instruction does? Lecture slides
Confused about control flow or stack discipline? Lecture slides

What to do

